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The work performed in this thesis is a first attempt at

word recogniton based upon the phonemic output of the Air

Force Institute of Technology (AFIT) acoustic analyzer. The

acoustic analyzer is the result of Dr.. Matthew Kabrisy's

long term guidance, hopes,.and energy and, oh yes,.let us

not forget the sleepless nights of many of his students..

The final report for several speech recognition

projects which I encountered during my research containea

phrases which, .when paraphrased, become, "Given more time

and money,.the recognizer would have worked perfectly." Let

me not be different. For many reasons, but primarily those

of time and a lack of data to process, the vocabulary is

limited to the 10 digits. The system has had insufficient

training and experience to determine whether or not it will

really work. Preliminary results are encouraging. The

system has parsed all words thus far presented, but there

have been, .at most, only four utterances of each word

incorporated into the state table.

My thanks to Dr. Kabrisky, Capain Larry Kizer, and

Major Walt Seward. It has been an interesting though

frustrating experience.
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My thanks and love to my wife, Polly, who was always

supportive and always acquiesed to my plaintive plea of,."I

Just need one more thing for my computer to finish the

thesis." Also, my love to Yvette and Dane who patiently

endured Daddy's studies and waited for tomorrows that rarely

came,

Claude Baker
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Ahstran

Thesis examines continuous speech recognition for a

vocabulary of the digits 0 through 9. Recogniton is

accomplished by parsing phoneme strings obtained from the

AFIT (Air Force Institute of Technology) acoustic analyzer.

Word recognition is accomplished by a finite state automata

implemented in UCSD Pascal. Novel features of the program

include the ability to load and exercise state tables

representing different vocabularies, as well as the ability

to interactively edit and modify the state tables without

recompiling. Complete details of the program are included.

)The quality of recognition is indeterminate at this

time. Sufficient training of the system has not been

accomplished to determine validity of the recognition

strategy. The system will parse all utterances for which it

has been trained, although no more than four utterances of

each word have been incorporated in the state tables.
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UTHE RECOGNITION OF WORDS FROM
PHONEMES IN CONTINUOUS SPEECH

I. Introduction

This thesis treats the topic of continuous speech

recognition by machine. The ability to converse with

machines through natural speech is a long sought goal of

Man. We dream of intelligent, omniscient companions;

god-like in their power but existing merely to serve. The

literature of science-fiction is replete with examples of

these machines. HAL, of the movie, "2001, A Space Odyssey",

is one of the better known sentient computers that listens

and talks. Though we desire these servants, we fear them.

)A recurring theme of the stories is, "Who will be master,

man or machine?" Few of the super-computers of imagination

have been benign. Many turned on their masters and

destroyed them, as did HAL. We love them and fear them, yet

as scientists and engineers we continue to pursue the

"intelligent" machines for the great benefits to be

obtained.

Current news magazines and the trade magazines of the

electronic industry seem to have frequent predictions or

announcements of soon to be released equipment which will

replace the office secretary. If we are to believe these

NJ 1



Aannouncements, in the not distant future we will need no

secretaries, nor grammar teachers, nor a wide range of other

people who deal with words.

Bakgrond

The Information Processing Technology Office of the

Advanced Research Projects Agency of the Department of

Defense (ARPA) in November, 1971 initiated a speech

understanding research (SUR) project to achieve computer

understanding of human speech. The ARPA SUR project had a

large budget, involved many separate groups, and spanned

five years. Its goal was a major breakthrough in speech

understanding capabilities (Ref 1:249-251). Now, ten years

)later, we have yet to attain meaningful, natural speech

recognition by computer. The phrase natural speech

recognition is used in the sense of continuous or

conversational speech recognition.

The fact that the SUR project was sponsored by the

Department of Defense is significant. The military has much

to gain from achieving speech recogniton capability. A wide

range of tasks will benefit from the automation of speech

recognition. Table I lists a set of tasks in which speech

recogniton would be useful to the military. More than any

other task this thesis is directed toward system control

through speech recognition.

2
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Table I

Speech Recognition Tasks with Military Application
1) Security

1.1 Speaker verification
1.2 Speaker identification
1.3 Determining emotional state of speaker
1.4 Recognition of spoken codes
1.5 Secure access voice identification
1.6 Surveillance of communication channels

2) Command and Control

2.1 System control (ships, aircraft, fire control,
etc.)

2.2 Voice-operated computer interfaces
2.3 Data handling and record control
2.4 Material handling (mail, baggage, publications,

industrial applications)
2.5 Remote control (dangerous material)
2.6 Administrative record control

3) Data Transmission and Communication
3.1 Speech synthesis
3.2 Vocoder systems
3.3 Transmission data rate reduction
3.4 Ciphering, coding, scrambling

4) Processing Distorted Speech

4.1 Diver (helium) speech
4.2 Astronaut communication
4.3 Underwater telephone
4.4 High "G" force speech

(Ref 1:310)

Problem

The research objective of this thesis was to develop an

algorithm to recognize words from phoneme strings in

continuous speech. The phoneme strings were to be provided

I~3



by an acoustic processor which has been under development at

the Air Force Institute of Technology (AFIT) for several

years (Ref 2).

Felkey (Ref 2) indicated that the acoustic processor

was 70% to 90% accurate in locating and identifying phonemeb

and presented results to support the figures. Based upon

these figures, an existing algorithm was selected to carry

out the word recognition task. The algorithm was to be

tailored to the specific problems of the acoustic processor.

Scope

The target vocabulary was to be small, less than 100

words. The vocabulary was to support a minimal cockpit

)environment, consisting of the digits and a few command

words. Table II is a listing of the selected vocabulary.

The phoneme strings to be parsed to words were to be

constructed from a set of 39 universal phoneme prototypes.

These phoneme prototypes were to be under revision by

another researcher. Table III is a list of the initial

phonemes used.

The speakers used for testing the system were to be

principally this investigator (Baker) and other American

males deemed useful for inclusion in the testing. Speech to

be used was to be confined to digit strings such as ZERO ONE

J4 S .4 b



Table II

Vocabulary Set

1. ZERO 8. SEVEN

2. ONE 9. EIGHT

3. TWO 10. NINE

4. THREE 11. CCIP

5. FOUR 12. SET

6. FIVE 13. ENTER

7. SIX 14. FREQUENCY

15. THREAT

THREE FIVE NINE with a maximum time constraint of three

seconds of speech. The time constraint was imposea by an

inability of the available hardware to sample and store more

than three seconds of speech.

Recognition was to be achieved by a relatively simple

pattern matching process since it was believed that little

linguistic/syntactic information would be available in the

limited vocabulary.
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Table III

Phoneme set

Computer Key Computer Key
Symbol Word Symbol word

1. PX .2ay 21. JX you

2. BX be 22. LX let

3. TX -o 23. RX read

4. DX day 24. EE eve

5. KX key 25. IX it

6. GX go 26. EI hate

7. HX he 27. EH met

8. H@ ahead 28. AE at

9. FX for 29. AX ask

10. VX yote 30. AA fattier

11. TH thin 31. AH nQt

12. DH then 32. AW all

13. SX aee 33. OU Qbey

14. ZX zoo 34. UX foot

15. SH 5h e 35. UU b.Qt

16. ZH azure 36. UH up

17. MX me 37. UH about

18. NX no 38. ER woQrd

19. NG sinkg 39. XX NA

20. WX jMe

6



The research divides naturally into the categories of:

software development, system training, and system testing.

The software to be developed included a system to execute

the pattern matching algorithm and an editor to alter the

word templates.

Ultimately, two separate systems were construcea with

one being discarded. The final system was a state machine

capable of parsing arbitrary patterns within the memory

limits of the host processol.. The actual software for

executing a state machine is quite simple, however, the

primary work of implementation lies in determining the state

change rules. The main result of the system training

becomes embodied in the memory contents representing the

system states. The minimal software necessary to execute

the state machine resulted in a program which combined the

execution algorithm into the same program module as the

editor. This resulted in an interactive system which was

easy to debug and train. The combined editor and execution

module permitted observation and editing of the executing

state machine.

i7



)
II. _11 Acoustic Processor

Hardware

The acoustic processor, which is the major component of

tnis speech recognition system, is a powerful, generalized

assembly of hardware and software. Figure 1 outlines in

block diagram form the major components of the acoustic

processor.

The computer which performs the signal acquisition and

processing is relatively straight forward in its

construction. Its design is a product of cooperative work

between the AFIT faculty, principally Captain Larry Kizer,

and various AFIT students, most notably Captains George

Beasley and Dan Fredahl. Beasley and Fredahl (Ref 6) are

responsible for the I/O processor embodied in the Cromemco

computer.

The signal processor is composed of three

interconnected computers with limited communications between

the processors. They do not constitute a network in the

sense that all the processors communicate directly with one

another. The Nova 2 is the central processor in that it

communicates with the Eclipse and the Cromemco, but the

Eclipse and Cromemco do not communicate with each other.

,88V
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The signal processor can process both audio and video

information. The Cromemco Z-2D is a Z-80 based

microcomputer containing 12 bit digital converters, both A-D

(analog to digital) and D-A (digital to analog). It also

contains 4 bit video A-D and D-A converters for video input

and output. The video converters contain their own high

speed memory but the memory for the audio digital converters

is the 64K byte memory of the Cromemco computer. The

information is moved in and out of the Cromemco memory

through a DMA (direct memory addressing) process. The 64k

byte Cromemco memory is the constraint which limits the

processing of speech to utterances less than three seconds

duration. We customarily process speech at a digitization

rate of 8KHz. Since 2 bytes are required for each 12 bit

word passed to or from the audio digital converters, 16

kilobytes of memory are used each second. Leaving room in

memory for the operating system results in a practical time

limit of approximately three seconds of speech at 8KHz. The

Cromemco is interfaced to the Nova 2 through a high data

rate buss for speech storage. Speech segments may be

digitized, stored, and played back through the digital to

analog converters very conveniently.

10V°



The Data General Eclipse computer is a relatively

powerful general purpose mini-computer. It is interfaced to

the Data General Nova 2 and three hard disk drives. One

drive shared with the Nova 2 is of 10 megabyte capacity and

the other drives are 20 megabyte capacity. The 10 megabyte

disk drive is of the common figuration which provides a 5

Mbyte 'fixed' disk and a 5 Mbyte removeable disk. The fixed

disk is fixed only in the sense that it is not to be removed

from the drive by the computer user. The other disk may be

removed to permit the transport or protection of data on a

disk. The Eclipse also has a 9 track tape drive used

primarily for archival storage of data and programs. The

two Data General computers, sharing a common disk drive,

communicate with each other through an inter-processor

communication buss. The inter-processor buss functions

primarily to prevent the two computers from accessing the

common disk drive simultaneously. The normal mode of

passing data between the two computers is through files

placed on the common disk drive. One computer writes a file

which may then be accessed and processed by the other

computer.

The Eclipse operates two CRT (cathode ray tube)

terminals. One of them is a standard text display termina±

but the other is a Tektronix 4010 vector graphics display

terminal. The graphics terminal serves an important

11



0function in speech work in that a program has been developed

which permits it to display speech spectrograms. The

current function of the system permits an operator to

designate a section of a speech spectrogram on the graphics

terminal and then hear the exact segment of speech

responsible for producing the spectrogram. The segments of

speech played back may have a duration ranging from a few

milliseconds up to approximately three seconds.

The Nova 2 provides system I/O for both the Data

General computers. It controls both printers currently

connected to the system. The primary printer is a

Printronix high speed dot matrix printer. This allows the

output of relatively high quality graphics for scene

recognition work, as well as the printing of speech

sprectrograms. The Printrbnix also performs the mundane

task of listing data and programs. The second printer

connected to the Nova 2 is a high quality daisy wheel

printer.

Signal H~andling

The speech signals may be acquired from a microphone

and digitized immediately, or recorded on tape and then

digitized. In the direct acquistion mode, the tape recorder

electronics function as a preamplifier for the microphone.

The amplified signal is passed through a Rockland active

12



) filter. This filter is capable of 8 pole high pass and low

pass function over a wide frequency range but for speech

processing it is set as an 8 pole low pass Butterworth

filter with a 3db cutoff at 4KHz. An 8 pole filter results

in an attenuation slope of 48 db per octave. Following the

filter, the signal is immediately digitized and stored. For

speech recognition, the signals receive a 6db per octave

logarithmic pre-emphasis beginning at 500 Hz. This

pre-emphasis is not a hardware function; it is accomplished

by software.

The signal processing system is configured to allow

very convenient acquisition of speech signals. Acquiring a

speech sample requires that the operator execute a program

which supervises the process. The supervisory program

currently used is AUDIOHIST, written by Captain Paul Finkes.

When executed, this program requests a file name for the

speech sample and allows the operator to choose between

inputand output. Upon selecting input, AUDIOHIST allocates

file space and sets up the Cromemco I/O processor to accept

a speech input. When all is ready, a lighted button,

convenient to the control console and microphone, begins

flashing. Depressing the button immediately starts the

analog to digital converter. The normal action is to press

the button and begin speaking. Upon reaching the time limit

of three seconds, the lighted button signals the end of

13
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input. AUDIOHIST is available to allow an immediate scan of

the acquired samples. It provides a condensed listing of

the maximum input voltages attained, with an approximate

indication of when they occurred. This permits a convenient

check to ascertain that the audio gain was within reasonable

limits. The general goal in checking speech input voltages

is to attain as high a level as possible without saturating

the A-D (analog to digital) converters. AUDIOHIST also

permits immediate playback of the acquired speech sample.

This is done routinely to insure that parts of words are not

missed.

Software

The software and associated algorithms naturally

constitute the important functional parts of the speech

recognition system. The current software design is largely

the work of Lt. Mark Felkey (Ref 2) but has recently been

modified extensively by Lt. Karl Seelandt.

Felkey's algorithm in a strong sense follows from the

work of Potter, Kopp, and Green (Ref 3) in their work on

speech spectrograms, published in 1947. They made the

observation that persons familiar with speech spectrograms

were able to read the spectrograms in much the same sense

that we read text. They also noted that spectrograms from

different speakers were similar for the same utterance.

14



This similarity between different speakers provides the

justification for Felkey's approach of accomplishing phoneme

recognition based on spectrographic data (Ref 2:12).

In processing an analog speech file for phoneme

recognition, the first step is the production of a

spectrogram of the entire utterance. Each vertical column

of the spectrogram, Figure 2, represents 64 digitized

samples or 8 milliseconds of analog speech. Performing a

DFT (discrete Fourier transform) on the data results in a 32

point DFT. Only the magnitude of the spectral components is

retained for further processing. The entire file is

processed 64 samples at a time, using rectangular windowing.

The resulting spectrogram contains frequency magnitude

information from DC to 4Khz, with frequency samples at 125

Hz intervals. The choice of 64 samples for each DFT is very

much empirical.

After the spectrogram is available, a correlation

program determines which phoneme is the best possible choice

for each column of the spectrogram. The phoneme templates

used in the correlation process are prepared by listening to

short segments of a speech file. A program developed by

Seelandt permits veiwing a spectrogram on the 4010 graphics

terminal and then designating a short sequence to be played

back over the system speakers. The spectrogram is not

15
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played back but rather the segment of digitized speech which

produced the spectrogram is played back. This permits the

isolation of potentially very short, well defined phoneme

segments to use as templates. The templates are placed in a

file which the correlation routine compares against tne

spectrogram, one column at a time. Figure 3 is a

spectrogram of several of the phoneme templates. Each

phoneme template is 5 columns wide or 40 milliseconds time

duration. The correlation process begins at the fifth

column of the speech spectrogram. Each phoneme template,

which is five columns wide, is compared to columns 1 through

5 of the speech spectrogram. The results are tabulated and

ranked then the process is repeated by comparing each

phoneme template to columns 2 thru 6 of the speech

spectrogram. A tabulation is produced for each 8

milliseconds of speech until the entire speech file has been

been through the correlation process.

Felkey produced spectrograms based upon several

different sample sizes. He judged the 64 sample spectrogram

to be the one which produced maximum intelligibility for a

human, yet which reached a 'good' compromise between time

and frequency resolution (Ref 2:15). (An unfortunate

feature of the DFT is that as frequency resolution

increases, time resolution decreases and vice versa.) The

17
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'good' compromise is one which allows resolution of the

shortest phonemes which Felkey observed to occur in the

speech samples he examined. In current work with the

system, we have seen phonemes which extended over only two

columns of the spectrogram. This represents a time period

of 16 milliseconds since each column of the spectrogram

represents 8 milliseconds of speech. The short phonemes

were observed on the very beginning of the 't' in the word

,two,.

Using short phoneme templates as this algorithm does

appears to obviate the need to account for variations in

speech rate. Since a phoneme selection is made every 8

milliseconds, the normal output of this program produces

multiple matches over time. For instance, a phoneme lasting

100 milliseconds in the speech file will result in the

phoneme recogniton algorithm producing 12 or 13 output

matches. If someone speaks slowly and stretches phonemes,

the Felkey algorithm simply indicates that multiple

occurences of the phonemes are joined to produce the longer

utterance.

19



) zII.. Jh. Sta tMachine

Introduction

The recognition algorithm studied in this thesis is

implemented as a finite state machine. The primary

motivation for choosing such an implementation was a

recognition that the more successful of the ARPA SUR

projects were based upon state machines. The HARPY machine,

constructed as part of the ARPA SUR project, was probably

the most successful speech recognition machine yet built; it

was a finite state machine (Ref 1). HARPY provided the

initial germ of idea for this algorithm. A review of the

properties of a finite state machine resulted in deciding

that a finite state machine would serve my purposes well.

Reasons Luf Chic

First, a state machine is, or may be, a very powerful

algorfthmic device. Every digital computer is conceptually

a finite state machine. Though even a modest digital

computer is capable of a very large number of states,it is

nevertheless, a finite state machine (Ref 5:63).

Second, the operation of a state machine is generally

quite easy to visualize. This may be a personal bias, but I

believed that the ability to visualize the operation of the

20



recognition algorithm was quite important. I am much more

comfortable with state diagrams than computer program

flowcharts and was thus strongly biased to choose a state

machine.

Third, a state machine is intrinsically capable of

determining order. The first recognition algorithm

attempted under this thesis was not designed to consider the

order in which phonemes occurred. Work performed with that

algorithm, however, showed that recognizing the order of

phonemes was necessary even in the small vocabulary which we

are using. This was an unanticipated result and stemmed

from the nature of the errors made by the specific acoutic

analyzer being developed in the AFIT signal processing

laboratory.

Fourth, a state machine is directly capable of timing

events. In the algorithm under discussion, a state machine

would accomplish timing by counting events. The actual time

duration of each event is measured by the analog to digital

convertor in the acoustic processor. Phoneme duration was

not considered important for this application, but the

inherent timing capability which the algorithm proffered

gave some hope of simple correction should the assumption

prove wrong.

21
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Fifth, a state machine simulation appeared to be one of

the few software implementations capable of being "rolled

into and out of" a computer memory and modified without

recompiling. No research was performed to find other

techniques but the capability is unique within my

experience. What this really means is that a state machine

simulation was constructed in which the state transition

information was held in a data file. The data file was

separate from the program which exercised the state machine.

We were thus able to modify the state transition information

quickly, easily and without recompilation of the program.

What jaaState Mcie

Let's begin by considering a state machine as a concept

rather than a physical device. Viewing it as a concept is

particularly appropriate here, since the state machine

implementation is in software.

A digital system may be modeled as a state machine. In

the model, a digital system is regarded as a system which

moves from one state to another in discrete steps. Each

transition or step is determined by the inputs to the system

as well as the current state of the system. At each

transition, the system may output information. In a

software implementation of a state machine, each state is

22



represented by a series of ones and zeroes stored in memory

(Ref 5:63).

To accomplish useful tasks, a state machine must have a

defined start state. In terms of a computer program, the

start state corresponds to the initialization process which

any program must accomplish. Certain memory locations or

registers must be set to zero, other storage locations must

be set to other predefined values. If this initialization

is not accomplished, the program will produce essentially

random results based upon the content of the storage

locations.

Implementation

The word recognition algorithms discussed were

implemented on an Apple II computer in UCSD Pascal. The

Apple had 64 kilobytes of random access memory, two disk

drives allowing online storage of 286 kilobytes of programs

and data, a printer and serial interface devices which

permitted direct communication with the Nova computer in the

acoustic processor.

The Apple, using Pascal, is a powerful, flexible

machine which permits simple access to the inner workings of U

various programs and processes. Pascal implemented on the

Apple cannot be relegated to the status of a mere subset of
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the standard Pascal language. It is missing only one

significant capability and that is the ability to pass a

procedure name as a formal parameter to another procedure or

function. When compared to the Pascal implementation on the

Cyber 6600, used by AFIT, the UCSD Pascal is actually more

powerful in certain respects. The UCSD Pascal will

accomdate set definitions with 512 members. The Cyber is

limited to approximately 54 set members. These facts are

normally of little significance but one algorithm considered

and tried briefly required large sets. The language on the

Apple was actually more suitable and attractive than the

Cyber. Certainly the Cyber executes code much faster and

has greater arithmetic precision, but neither of these

capabilities was of any value to this project. The

convenience and accessability of the Apple overshadowed the

power of the Cyber or other computers available.

The state machine, as implemented, is little more than

an array of data with a mechanism to accept inputs and

determine the next position in the array. A position in the

array corresponds to the current state of the machine. The

state machine constructed was capable of 256 states, and a

single input. THe machine was implemented with 256 states

because this number of states may be addressed with a single

byte, or 8 bits, of information. Exceeding 256 states would

immediately double memory storage requirements. The input
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accepts 40 different values, corresponding to 40 different

phonemes. Any state is capable of being an output state.

An output state is one in which the algorithm determines

that a word has been found. The normal output condition is

to indicate "no output" at each state transition. However,

when the machine has stepped through a sequence of states,

indicating detection of a word, that word is typed out.

Data Structure

Since the state machine implementation and algorithm

constitute a major goal of this thesis, it is appropriate to

discuss the data structure and and recognition strategy.

Figure 4 is a diagramatical representation of the state

machine data structure. In the terminology of Pascal, this

is a record of arrays. Records are an important structure

within Pascal, they are responsible for much of the power of

the language. A record is a high level data structure which

the programmer defines. The structure represented in Figure

-4 is composed of three different arrays. The power of a

recoru resides in the ability of the system to treat .the

record as a single entity. The arrays which compose the

record are

1. A two dimensional array of integers with values

from 0 to 255 with subscript ranges from 0 to 255
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State 0 40 next states,

0

State 255 40 next states

State 0

I~i 32 Output words possible

j I Lookup table identifies
output word for each

State 255 state.

10 characters I
Word 0 Text of output word -1 1

10 characters
Word 31 Text of output word

Figure 4. State machine data structure
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and 0 to 39.

2. An array subscripted from 0 to 255 taking integer

values from 0 to 31.

3. A two dimensional array with subscripts of 0 to 40

and 1 to 10 with each cell of the array being a

character variable.

The actual arrangement of the arrays is insignificant.

What is important is the ability to define such a structure,

place data within the structure and then write the data into

permanent storage as binary image of the structure as it

existed in memory. The system treats the record as a entity

and reads the record from storage or writes it to storage as

Na single entity. The record as described in Figu-e 4 (and

as implemented) occupies approximately 10,000 bytes of

storage. The programmer is naturally allowed access to the

individual items of the record to read or modify them.

Recog nStrategy

Figure 5 is a state transition diagram to recognize the

word zero. Let's discuss it in some detail. The discussion

will illuminate the inner workings of the state machine and

reveal the recognition strategy.
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Each circle represents a state and the number within

the circle is the state number. As previously mentionea,

state 0 is the starting point for all recognition attempts.

There are many paths leading out of state 0 but we will only

discuss two of them for the moment. The phonemes which will

produce a transition from one state to another are listed

between states. The phonemes are the numbers beside each

arrow. State 1 has an arrow which loops back to state 1.

Listed beside that arrow are phonemes 1 and 2. The meaning

is that so long as the input phoneme is 1 or 2,;the machine

will remain in state 1. Once the machine has reached state

1, an occurrance of phonemes 9, 10, 13, or 20 will change

the state to state 13. The phonemes listed are explicit

state changes. Another state change which is implied, but

listed nowhere, is that upon reaching state 1, if any

phoneme occurs other than 1, 2, 3, 4, 9, 10, 13, or 20, the

the machine transitions to state 0. This is both a strong

point and a weakness of the chosen recognition strategy. It

is a strength of the algorithm in the sense that it appears

highly unlikely that this algorithm will confuse one word

for another. If one single phoneme occurs which is not

within the experience of the system, the decision is that

the most recent phoneme string is unrecognizable. The

weakness, of course, lies in the intolerance of the system

to deviations from patterns on which it has been trained.
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The term "within the experience of the system" requires

explanation. It means that the system must have been

trained to recognize the string under consideration. Each

possible deviation from the expected path to a word must

have been defined. In practical terms, this requires that

great effort be devoted to training the recognition

algorithm. All tolerated deviations from the expected state

path must be explicitly determined and entered into tne

state transition matrix. The training strategy adopted

requires that the trainer examine the state transition

diagram for a word an integrate new word templates into the

existing structure. The expectation is that as many

patterns are processed and entered into the state transition

table, few changes will be made as each new word is

processed. I'm not speaking of "new" in the sense of words

not previously in the vocabularly. It means new utterances

of words already in the vocabularly.

Returning to the explanation of Figure 5, phonemes 1

and 2 are the "z" sounds of zero. Phonemes 3 and 4 are the

"er" and phonemes 5 and 6 the "oh" sound to terminate the

word zero. All other phonemes listed are observed errors

and deviations from the expected phoneme string.

Obviously, this technique is highly dependent upon the

function of the acoustic processor and the speaker. It does
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appear possible, though, to allow for speaker variations by

simply allowing new paths to a word. Certain types of

deviations are allowed but if the deviations are not within

the experience of the system, the state machine returns to

state 0 and begins attempting to parse a new word.
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.JIV. Trainin the eonzr

Training the word recognizer is at best tedious and

time consuming. Furthermore, it does not appear that the

process is amenable to automation. The reason for this is

simple. Automating the training process requires a more

capable recognizer to accomplish the training than is

required to carry out the word recognition process.

The training process which I have followed is very time

comsumptive but minimizes memory use in a general sense.

Most important, the training process appears capable of

producing generalized word recognition templates. An

automatic training algorithm is a desireable goal but it is

not clear that one can be constructed. It appears that an

automatic trainer capable of generalizing the word templates

would be more complex than the word recognition algorithms.

The training process begins with the state machine

initialized so that all possible state transitions result in

a jump to state 0. A jump to state 0 is the required action

when the input phoneme results in a string which the state

machine has not been trained to recognize. We shall begin

with a description of training the machine to recognize the

word "zero". However, before we begin the description,

several details of the acoustic analyzer must be
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illuminated.

The phoneme set used for this work consists of phonemes

taken from the words "zero", "one", "two", "three", "four",

"five", and "six". There are 28 phonemes in this set. They

are listed in Table IV. The keyword listed for each sound

is not appropriately marked in a phonetic spelling sense.

The underlined portion of each word is an approximation of

where the phoneme was obtained. Note that the phonemes are

duplicated in several instances. The phoneme "ou" appears

in three different places as phoneme numbers 5, 6, and 20,

for instance. In general, when a phoneme appears with a

number as part of the name, as in UU1, the lower numbered

phoneme represents a beginning segment of the phoneme and

the higher numbered phoneme a later segment of the same

sound.

Very briefly, the steps required to train the state

machine to recognize a word are:

1. Obtain a digitized speech file.

2. Process the speech file to obtain a spectrogram.

3. Process the speech file to obtain phoneme

recognition results from the acoustic analyzer.
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Table IV

Phoneme Set
Computer Key Computer Key
Symbol Word Symbol Word

1. Zi zero 15. TH 1bree

2. Z2 zero 16. R thr-ee

3. ER1 z.=o 17. EEl thr~e

4. ER2 Z.~.o 18. EE2 thr&

5. OUl zer.Q 19. F four

6. 0U2 zer.Q 20. OU fg.ur

7. WO gne 21. UH Live

8. AH -Qne 22. IE fi~ve

9. Ni onle 23. V f iye

10. N2 onle 24. S1 .Aix

11. T -two 25. S2 Aix

12. UUi two 26. M si

13. UU2 tXiQ 27. IX2 six

14. UU3 tAQ 28. K siX.

4. Examine the spectrogram to determine the time at

which each word in the speech file b-egins and

ends.
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5. Mark the phoneme recognition results with the data

obtained in step 4.

6. Determine which phonemes in the phoneme

recognition results represent "correct" phonemes

and which are errors from the acoustic analyzer.

This step is simply a best guess and may later be

revised.

7. Form a state diagram based upon the results of

step 6.

8. Enter the state diagram information into the state

machine.

"Zero" is ideally composed of the phonemes "z",

"er", and "ou". Table V is a list of phonemes, for the word

"zero", which have been extracted from a larger list

produced by the acoustic analyzer in processing a speech

file containing the words "zero", "one", two", "three", and

"four". The phonemes listed are those which the acoustic
analyzer indicated as having the highest correlation for

each time segment of the speech file. The numbers 48

through 78 indicate the time slice number since the

,9 beginning of the speech file. Recall that each time slice
I,

represents 8 milliseconds of speech.
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-Table V

Phonemes of word "zero"

Segment Phoneme Phoneme Segment Phoneme Phoneme

Number Number Name Number Number Name

48 2 Z2 64 3 ERI

49 2 Z2 65 4 ER2

50 2 Z2 66 4 ER2

51 1 Zi 67 4 ER2

52 1 Zi 68 4 ER2

53 1 Zi 69 4 ER2

54 1 Zi 70 4 ER2

55 2 Z2 71 4 ER2

5b 1 Zi 72 13 UU2

57 2 Z2 73 13 UU2

58 2 Z2 74 16 R

59 1 Zi 75 5 OUl

60 13 UU2 76 5 OUl

61 13 UU2 77 16 R

62 13 UU2 78 16 R

63 3 ERI

Based upon the information in Table V, we can form the

state diagram of Figure 6. Note that the first phoneme of

Table V is "Z2" or phoneme 2. Figure 6, the state diagram,
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State 0

t a t e 2 , , 1 , 1
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has been chosen so that Z1 or Z2 will produce a transition

to state 1, the start of the "zero" string. Upon reaching

state 1, input phonemes 1, 2, and 13 will yield a next state

of state 1. Phoneme 13, occurring at time segments 60, 61,

and 62 of Table V, is an error from the acoustic processor.

However, because we have now seen this phoneme occurring in

a "zero" string, we shall include it in the "experience" of

the state machine. This is accomplished simply by

programming the state machine so that while in state 1,

input phoneme 13 produces a next state of state 1. From

state 1, an input of "ER" , which is phoneme 3 or 4, will

cause a transition to state 2. While in state 2, the

machine waits for the occurrence of the final phoneme in the

"zero" string, which is an "OU", phoneme 5. At time

segments 72, 73, and 74 observe the errors. Before

completing the "zero" string, phonemes 13 and 16 appear. We

choose to incorporate these by remaining in state 2 and

waiting for phoneme 5. When phoneme 5 occurs, the machine

transitions to state 3 and produces an output to indicate

that the word "zero" has been found.

Several assumptions are implicit in this procedure used

to train the machine. The first assumption is that when the

machine reaches state 3, the word "zero" has occurred.
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Given the nature of the machine this is not necessarily a

true assumption. It is possible to step from state 0 to

state 3 with only three inputs. Three inputs would only

represent 24 milliseconds of speech. Obviously, no one

speaks the word "zero" in that length of time. However, we

have not observed the sequence to occur other than in the

word "zero". The best we can say is that it appears to be a

reasonable assumption to believe that upon reaching state 3,

the word "zero" has been processed.

Another potentially nettlesome assumption is the error

processing. Is it reasonable to simply wait for the correct

phonemes to occur when we are observing "errors"? This

problem is eliminated by redefining the "errors". The

"error" phonemes are not really errors within the context of

recognizing the phoneme string as a word. They are simply

phonemes which have been observed to occur while processing

the word. From the viewpoint of a human observer, the

phonemes have no place in the word. However, since we have

observed that they occur and do lead to a correct parsing of

the word, they will be incorporated in the knowledge of the

state machine.

The final step in the training process is to

incorporate the state diagram of Figure 6 into the state

transition table of the state machine.
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Incorporating the second, third, and successive

occurences of "zero" into the state table will follow much

the same process. Where possible, new error phonemes should

be handled by self looping, as was done for phonemes 13 and

lb on states 1 and 2. It is our belief that this procedure

will generalize the recognition process so that new

occurrences of the word "zero" will eventually produce no

changes in the state transition table. If a new path to

state 3 were created for each occurrence of "zero" which

differed from previous "zeros", we would quickly consume all

available memory and simply have several paths which lead to

state 3. By attempting to incorporate all possible

variations into one path, the path becomes very generalized

and permits variations within the experience of the system,

yet forces certain criteria to be met.
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NV. Resullts nd Conclsion

The primary result of this thesis is an algorithm

described in previous chapters which may be a useful

continuous speech word recognizer. The technique described

is well adapted to the data produced by the AFIT acoustic

analyzer and appears to have a high potential of functioning

to recognize a small vocabulary. For several reasons the

technique does not appear capable of handling a large

vocabulary. The foremost reason is simply the problem of

finding sufficient differences between words. For the small

vocabulary considered for this project, the differences

between the words are great enough as to present no problem.

As the vocabulary increases, it is safe to say that the

distance between various words will decrease and the

algorithm will encounter difficulty parsing the words. A

major difficulty in a larger vocabulary will be the methoa

selected to handle error phonemes.

What can be said of this algorithm is that it

successfully parses each utterance which has been

incorporated into the state transition table. A total of

fifteen utterances have been incorporated for the words

"zero" through "six". No utterance has been recognized

before the state machine was trained to recognize that

41

Pl



particular utterance. It is understood that a machine which

must be trained for each individual pattern it is to

recognize is useless. However, it appears that the changes

necessary to incorporate each utterance are decreasing as

the incorporated experience grows.
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VI. Recommendations

The most important recommendation which may be made to

anyone contemplating continuing this project or another of

similar nature is that the project should not be considered

unless the acoustic analyzer is under the control of the

individual attempting word recognition. The recognition

work attempted under this thesis has done little more than

verify that the software functions as intended. It does not

suffice as as a test of the recognition algorithm.

The reasons for the recommendation are relatively

simple. If another individual is' extending the acoustic

analyzer, he or she must be free to make changes to suit

their goals of phoneme recognition. In general, the goals

of phoneme recognition and word recogniton are compatible.

Unfortunately, the word recognition goal requires a stable,

copious output from the acoustic analyzer to build and

verify the word recognition process. Neither goal of stable

or copious output will be attained while someone else is

modifying the acoustic analyzer.

The next recommendation is incorporate more utterances

into the state transition table described and verify or

disprove the algorithm described. I estimate that the word

recognizer is likely to begin functioning before 10
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utterances of each word have been incorporated in the state

table. That is, begin functioning in the sense that words

will be recognized based on the templates already

incorporated in the state table.
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The program described is a single input state machine

of 256 states. Each state has 40 possible next states,

based upon 40 different input phonemes.

Combined in one program are all the tools needed to

execute the state machine, to edit and change any

information contained in the state table, to alter the

output information from the machine and to transfer the next

state tables to the printer in a readable form.

Upon executing the program, there is a prompt line

which is "Which state machine?" The proper response is a

single character such as "1" or "A", etc. The character

will be incorporated into the file name, STMACHx.DATA, where

x is the input character. The program will attempt to open

that file. If the file is opened successfully, the program

continues, otherwise the prompt is repated. Entering a

period will cause the program to ignore any data files and

continue but the memory locations reserved for the state

machine will all be set to zero. This is the proper

condition for defining a new state machine, you might say a

"clean slate". The previously described action is

accomplished by the init procedure.

When the state machine has been loaded to memory, a

prompt line appears with the options, "E, P, Q, X, V, W".
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Typing "E", calls the editor. The editor allows the

user to freely examine and modify the contents of the state

machine. The screen display is similar to Figure 9. The

numbers 1 through 40 are the possible input phonemes. The

other information, mostly zeroes, are the next states.

While in this state, input phoneme 2 will cause a jump to

state 1, input phoneme 4 will cause a jump to state 25. The

cursor may be moved from one phoneme to another with the

Apple Pascal editor cursor movement commands. The move keys

are cntrl-O, cntrl-L, right arrow, left arrow, and return.

Cntrl-O moves the cursor up and cntrl-L moves the cursor

down. The phoneme to the immediate right of the cursor may

be modified by by entering digits. You may terminate the

entry with a return or a cursor move. The editor may also

be entered from either execution mode.

Typing "P", for print, will result in the program

asking which states are to be printed. If it were told to

print states 1 through 25, the result would be an output

similar to Figure 9, repeated 25 times. Three next state

tables are printed on each page.

Typing Q will start the process of exiting the program.

You will be asked whether the state machine in memory should

be saved. If no data is to be saved on disk, the program

may be exited by typing a series of "Q's".
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1 2 3 4 5 6 7 8 9 10
0 1 1 25 3 0 0 0 0 0

11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0

21 22 23 24 25 26 27 28 29 30
0 0 0 0 0 0 0 0 0 0

31 32 33 34 35 36 37 38 39 40
0 0 0 0 0 0 0 0 0 0

State: 3
Output word is [no output]

Figure 7. Next state screen display

Typing "X" will put the machine into an execution mode

in which the only display is the output words and input

phonemes. No next state table is displayed.

Typing "V" places the program in an execution mode in

which the next state table is constantly displayed and

updated for each state transition. For either execution

mode the phoneme inputs may come from the keyboard or a

file.

Typing "W" allows entry of the text of the output

words. A word is displayed for each state while editing or
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executing. The normal output is "no output".

The user may exit the program by typing a aeries of

"q's". The number varies depending upon the exact status of

the program. If you are using the editor from inside the

state machine execution module, four "q's" may be required

to get out of the program.
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SIt printer:)

program state;
uses ic. appleettaff;

tonst
starray a true;
outarraya false;
aphons*39;

word! in.-! 7i

type
stmach a record

nxtst:packed arrayCO. .255,0. mauphons] of 0..255;
word :packed array(C. .255] of 0. .31;
wtezt:paoked arrayC0..40,1..10] of char;

and;
nuatype x 101-1,

numsetype a set of nuintype;
war

sm: s tma oh1
lines: integer;
smode :boo lean;
numset:nuusetypt;
name it rinq;
oh: char
visible.quit:booleani
eoline: char;
phonum,edstate:inteqer;
spos:packed arrayC0..mazphons] of O.maphons;
ypos:packed artayt0..uazphons] of 0..aphons;
inphons: text;
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. .

Init performs the task of initializing global

vartables and and setting up the state machine.

tttttCtdttttttttttt**teeCttttt*eeeeetteaeeet~*tttts*t*,ettttttttttte t

i

procedure thiti

Val

ch:char,
result:Anteger,

safile: file of stmach;

i,j,pnum:integer;

begin
visibie:-falsei

quit:ufalse;

edstate::O;eoline:=chr(13);
nuase t:=1 '. . 'P'J;

Go to the console and ask which state machine file
is to be used. The state machine files are all

identified as STMACHx.DATA. The "x" is any single

character other than a " ." which the Pascal system

will accept. Typing a period in response to the

prompt "Which state machine" will result in

initializing the state machine so that all next

states are State 0.

)

repeat
writeln(lwhich state machine? ),

read(keyboard,oh);

if eolntkeyboard) then ch:='O';

name:zlstmach .datali

name[73:uch;
(t5i.tc)

reset(safilename);

( * 14 a
result:nioresult;

If (resultOC) and (cho .') then

writeln(name,, not on prefixed volume');

until (resultuO) or (cho'.');
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. .. .

Now read in the state machine or set every thing to

sere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

if tesuit=O then
begin

get(safile)i

u:;-safi eA;

end

else fillchar(sm,0izeof(sm),ohr(O));
pnuan --I;

C
........................................................................St p th r ys p a d po , w t th • yi

Set up the arrays, zpos and ypos, with the x y
co-ordinates where the next state will be displayed

for each input phoneme.

. . . . . . . . . . . . . . . . . . . . . . . I. . . . . . . . . . . . . . . . . . . . . . . . . o . . . . . . . . . . . . . . . . . . .

3

for i:-O to 3 do

begin
for J:uI to 10 do

begin

pnuu:spnum+l;

zpostpnum]:n(j-l)*4;

ypos~pnum]:ai*3 + 4;

end;
end;

end;
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Procedure savssm saves the state machine by writing
it to a data file. It defaults to using the name of

the state machine which was read from disk at

initialization. If it is desired to save the state

machine under a new name, simply type a character.
The character will be incorporated into the data

file nane as STMACH. DATA where "a" is the character

entered.

procedure savesm;

var
smtile:file of stmach;

result:integer;
quit:boolean;

ch,chl:char;

beqin
quit:.false;

repeat

repeat

)clear;
writeln('save the fie snae,'');
writein(C(return) to use this name or enter char');

read(keyboard,oh);

if not eoln(keyboard) then name[73:ach;

writaln('saving as ',name);
writtln('ok? ylnil );
chil:=getchar([C'q , '0','y', 'Y' ,'n', 'N' 3),

case chi of

'q''O: begin

quit:strue;

end;

end; (*case*)
until (chla'Y') or (chlu'y') or quit;
If not quit then

begin
(*$I-*)

rewrite(smfilename);
satflleA: s3;

put(smfi il);

result:zioresult;
alose(safiie look);

end5
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until quit or (result-O);

end:
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Th. topline procedure writes a list of options
acrossthe top of the screen. Called by pntsorn.

procedure toplinte;
begin
It not smode then promptat(O.'Sftate, Ofutword, Ofult edit');
end;
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Procedure wrtst writes the state machines current
state near the bottom of the screen while the

program Is executing in !he visible mod*.

procedure wrtst;

begin
pramptat(stline, State: )

wri te~edetate )
end;

58



The editor function allows the cursor to be mnved

freely from one phoneme to another on the screen.

Keyboard inputs to move the cursor actually only

change the phoneme number pointed at. Procedure

ourspos accepts the phoneme number and moves the

cursor to the correct position on the screen.

ctcsJccccccctccstctstccccctckcccta caccac a eccaccacct ctcteteettetatett c

)

procedure curspos(var inphcn:integer)i

begin

qotozy(xpos[inphon],ypos~inphon);

end;
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Procedure wrtword is a screen update procedure.

Each time a state change is accomplished, wrtword

interrogates the state machine for an output and

writes it to the screen.

*C3I3Swft3* 5*5*55* *3**3*******S*S****S5****t*t********t** t5*t*5*5*5*5*t

)

procedure wrtword;

begin

prouptat(wordline,'Output word is '3)

write( [',sm.wteztCsm.wordtedstate33,'I');

curspos(phonum);

end;
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Procedure pntscrn paints the screen. This is the

primary display procedure while operating in the

visible mode. In the visible mode, the screen is
updated for each state change The screen display

presents the next state for each possible input

phonene. In addition, the screen displays the

output for the current state.

procedure pntscrn;

var

J,phonumb:integer;

begin

clear;
topline;

gotoxy(0,3);

The first for loop involving phonuab writes a line

which labels the next states. On the first pass
through the "for j:=l" loop the labels are I through

10. On the next pass, i through 20, etc. Fourty

next states will be displayed and labeled. The

second for loop involving phonumb actually writes

the nest states.

)

for 1:-i to 4 do

begin

for phonumb:zl (j-1)210 to j*10 do
write(phonuab:4);

writeln();

for phonumb:ul*(j-l)*1O to j*1O do

write(su.nztstCedstate,phonumb-13:4);

writeln( )
write ln( )

end;
wrtst;

wrtword

curspos(phonum);

end;
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I eae*tetseet**tt***5*tC**tt*t515tt551tettttttttttttttt~tCItt5tt5ttttt

The editor procedure allows the user access to all

portions of the state machine to permit modification

of the next states and outputs. The constants

declarations it contains imbedded control characters

which are specific to cursor movement from the Apple

keyboard. The declarations are the characters for

up, down, right, and left cursor movement.

,tttttetltteetetttettatatesxeattta,*ttttlettettfettetCCtattWISCtlt*t*tt

3!

procedure editor;

Oonst *1

up= ; C'cntrl-O*)

down=' (*cntrl-L*)

right=' '; ('ontrl-US)

left.' '; ('cntrl-H*)

war

promptline:integer;

xoord,ycordnxtst,wordnuu:integer;

quit:boolean;

I fY
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Kover is passed characters which are keyboard inputs

Intended to move the cursor. It uses modulo

arithmetic to calculate which phoneme the cursor has

been placed on. This information is calculated
based upon the fact thai there are 10 phonemes

displayed on each line of the screen display. After

calculating the new cursor position, the cursor is

moved by calling curspos.

procedure mover(var ch:char);

begin

case oh of

down: begin

phonum:z(phonum1O) mod (masphons+l);

curspos(phonum);

end;
up: begin

phonum:a(phonum 30) mod (maxphons+I);

curspos(phonum);

end;
right: begin

phonum:z(phonum+l) mod (maxphons+l);

curspos(phonum);
end;

left: begin

phonum:=(phonum+masphons) mod (masphons+i);

curspos(phonum);
end;

end,
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The statimp procedure permits modification of each
next state while in the edit mode. Statimp

determines which next state to alter based upon the

cursor position. Statimpm is called by the main
editor procedure when the character from the

keyboard is a numeral. When the input is a numeral,

there is an assumption that the next state pointed

to by the cursor is to be changed. Once statjmp is

entered, the procedure performs a character to
integer conversion in the repeat until loop until

the user moves the cursor with a return, a right or

left arrow, or a control 0 or L (Cntrl-O and cntrl-L

move the cursor up and down respectively). Once

entered the procedure reads the keyboard directly.

procedure statjmp(var ch:char),

vat

tot:integer;

quit:boolean;

(t begin
quit:wfalse; 4

tot:.0;

repeat

I

The character to integer conversion is accomplished

by by taking the ordinal value of the input

character and subtracting the form it the ordinal

value of the character "0" which is decimal 48. The
mod 256 operation prevents the input from exceeding

the maximum state number and crashing the program.

1

tot:=(tottl0 + ord(ch)-48) mod 256;

write(tot:4);

ourspos(phonum)i

read(keyboard,oh);

case oh of

up,down,right,left:quit:utrue;

end;
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Set the next state to the value obtained from the
character to integer conversion.

sm.nztst~edstat*,Phonum3:ztot;
until quit or eoln(keyboard);

If the input number was terminated by a return, then
increment the phoneme number, I.e. move the cursor
to the next higher numbered input phoneme. If the
return was not used then we got an up, down right,
or left cursor movement. Update the cursor position
with mover.

.. ..). . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if not quit then phonum~u(phonum~l) mod (matphonsel)
else mover(ch);
curspos(phonum);t end;

begin (*editor*)
prompt line:=22;

phonum: 2J

pntscrn;
quit: afalse;
repeat

read(ktyboard,ch);
case ch o f

s', IS: begin

Get an integer from the user to inditate which state
is to be viewed or edited. Af';er getting the
integer, update the screen.

promptat(promptllne,'whlch state? 1;
readln(edst ate);
adstate:uedstatt mod 2S6;
pntscrn;

end';
qI,IQI: begin

'5



Leave the editor and return to the procedure which

called the editor.

)

quit:strue;

end;
tot,O': begin

This function wants an integer. I have assigned

word 0 to be "no output". The integer is used as an

index into an array of characters to display the

text of the output word. To display the output word

"sero", enter a "I" here, "one" is displayed by

entering "2", etc.

)

promptat(promptline,'What is output word number? ),

readln(wordnum);
gotozy(O,promptline);

crt(eraseol);

* / wordnum:=wordnum nod 41;

sm.word~edstatel:=wordnum;

wrtwordi

end;
1+',';': begin

Increment edstate and update the screen to show the

new state. Edstate is the variable which determines

the current state of the state machine while editing

or ezecuting.

)

edstate:s(edstate +1) mod 256i

pntscrn;

end;
'-'' begin
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Decrement *dstate and update the screen.

)

edstato:=(odstate + 255) mod 256;

pntsorn;

end;

up,down,right,

left: over(ch);
*0',h1','2','3',14', 15,

6',7 ''S, '  :begin

There is a presumption that the next state is to be

altered when the input is A numeral.

i

statimp(ch);

end.

end; (case*)

until quit;

end; (*editor*)
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Statach Is the procedure which exercises the state

machine. As mentioned previously, the variable

edstate holds the current state of the machine.

This program began life simply as an editor for the

state machine. It became apparent that many

benefits might be derived from combining the
execution and editing functions.

The Integer, laststat, holds the last state

that the state machine was in. If laststat does not

equal edstate, the screen is updated to display the

current state. Otherwise, the screen is

undisturbed. This is done because rewriting the

screen is time consuming.

)

*j'aure statmach;

Va.

oi: char;

running,goodnum,quit:boolean;

laststat.inphon:integer;
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The prompt procedure writes the top line of the
screen in the visible execute sode to display the

input options.

procedure prompt;

begin
prouptat(O,' O .. , E(dit, O(uit, R(un )

end;
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Procedure run is used to open a test file and set up

conditions necessary to read input phonemes from
that file. The name of the file is obtained from
the keyboard. The procedure Is repeated until a

file is successfully opened or the user enters an

empty line. A empty line is a return with no

preceding characters.

aetattwatftat*t***ateateeeeeettttatttteaaa*esa~tae,*atte~ta***aee

procedure run;

var

name:stringi

):integer;

begin

clear;

repeat

writeln('Which file?');

readln(name);

j:-length(name);

reset(inphons,name);

until (jcO) or (ioresult=O);

Set the boolean variable, running, true. The

variable, lines, is used to display the number of
phoneme inputs read from the input file.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

running:utrue;

i nes: u;

end;
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The getphon function probably contains the most
obsure code in this program. While reviewing this
procedure, keep firmly in mind the function of the

procedure. Its function is to obtain an integer,
result, to pass back to the procedure statmach.
Result is an integer which is the number of the

current input phoneme. The input phoneme may come

from the keyboard or a file. The boolean variable,
running, determines whether getphon goes to the

keyboard or a file for the phoneme. Getphon is a
boolean function. The value it returns indicates
whether or not a good number has been obtained. A

good number has not been obtained when the user

enters anything other than digits. Running is set
to false by reaching the end of the input file or
detecting that a key has been pressed.

)

function getphon(var ch:char;var quit:bool'ean;var result:integer):boolean;

vat

C

Number is used internally by getphon to determine
the final result of the function. Number simply

Indicates whether getphon has processed an integer
or called another function such as the editor.

While in getphon, if all keyboard entries are

digits, number will remain true.

Savestat is used to remember the current state
the machine has reached while executing. Savestat

is used only when getphon calls the editor. Use of
this variable permits the user to step around

through the editor and make changes but upon exiting
the editor, the machine returns to same state it was
in on entry to the editor.

I

savestat~integer;

number:boolean;
first,second:integer;

third:real;
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begin

resul t:NO
number: utrue;
if not running then

begin
promupt;
repeat

read(keyboard,ch);
cast oh of

.0., 1,

14. 5

'G '9'begin

Perform character to integer conversion

resmlt:uresult'l0+ord(ch)-4B;
if result(l then result:ml;
if result)40 then rosult:z40;
gotozy (37,23);
write (result: 2)i

and,

Call the editor

saves tat : eds tate;
- mmode:ufalse;

ed it or
Imode: Mtrue;
if edstate~savestat then

begin
odstate:csavestat;
pnt5cr n;

end;
promptat(O,'Execution mode')i
nuuber ufalse;

end;
q','O':begin
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Ouit the getphon procedure and set quit true. This

will cause an exit from the statmach procedure.

Leaving statmach produces a return to the main loop

of the program.

number:nfalse;

quit:=true;

running:tfalse;

end;

'r','R':begin

Call run and open a phoneme input file.

)

runj

end;

end; (*case*)
until eoln(keyboard) or not number;

if number and (result)O) then

begin

result:aresult-1;
getphon:=true;

end
else getphon:=false;

end

else ( running is true C)

begin

If we haven't reached the end of the file and no key

has been pressed then read a phoneme from the input

file and pass it back to statmach. If a key has

been pressed or we've reached the file end, then set

running false and close the input file. With

running false, the next entry to getphon will have

getphon expectig input from the keyboard.

.

If not eof(inphons) and not keypress then

begin
readln(inphonsfirstsecond,third),
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result U i rst
gotphon:ut rue;
Ilnes:mlines#I;
gotozy(33, 13);
wr its Clines);
go tozy( 37,23);
wri ticfirst:?);

and
*lse

begin
running ua a cc
close(inphons,lock);

end;
endi

end;
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Statmach is the main procedure which exercises the

state machine. It remains in a loop of getting an

Input phoneme and and then interrogating the next

state table and then returning for a new input
phoneme. While in the procedure, getphon, it is

possible to enter the editor and modify the next

state table.

sttaaaot**teaaeele t,.ate*tttaeeeeaelataaet*e~ettetaeatatta

}

begin (t statmach C)

edstate:O;

laststat:O;

quite:false;

running:=false;

clear;

if visible then pntscrn;

repeat

qoodnum:=qetphon(chquit,inphon)j

it goodnum then

begin

( .edstate:=sm.nitstCedstate,inphon];

if visible and (laststat<>edstate) then
begin

pntsorn;

laststat:zedstate;

end;

if not visible then

begin

promptat(ig,'output word is ')i

write('[',sm.wteat sm.word edstate31,' ');

end;

end;

until quit;

end (*statmach*)
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tI
Write a prompt line for the program's main loop.

)

prooedure screen;

begin
end clear

promptat(O,'Z(dit, P(rint, O(ult, X(ccute, V(ts, W(ords');

&ndi
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The vocab procedure permits defining the text of
each word in the vocabulary of the state machine.

procedure vocab;
vat

wordnum, 1, : integer;
name: strings

begin
reapeat

clear;
prozptatC01 'Vocabulary'text entry. Hoeg * to exit.');

promptatC1,'Which word number'');
wri tol I
read !n~wordnum);
if Cwordnum)u0) and (wordnum(=40) then

begin
promptat( , 'Word
write(wordnum,' is ', r sm.wtezt~wordnum,3I);
promptat(2,'Enter text. Max is 10 characters');
writeln();
readln(naue);
I. elength(namne);
if 1)0 then

begin
for i:cl to I do

sm. wt es t wo rdnun, iI : name El]
for i:zlci to 10 do

sm.wtestEwordnum,i3:='

end;
and;

until wordnu=(0;
end;
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The print procedure permits printing the next state

Information for an arbitrary number of states. The

information is printed in the format used for the

screen display. Three screens of information are

printed on each page.

ft~tsea,***,Cet~tleettt t,**, t*f**** ***2t3*,*J,*,*,,ea** ttete**weest

procedure print;

var

ik,phonumb:integer;

counterstate,startendst:integer;

answer:char;

printer:text;

begin

rewrite(printerfprinter:');

if ioresult=O then

begin

wr it. In

write('Enter beginning state to print ');
readln(start);
write('Enter end state to print ');

readln(endst);

counter:z-1;

write(chr(12));

for state:=start to endst do

begin

counter:z(counter + 1) mod 3;

if counter=O then

begin

for k:=l to 7 do
write(printerchr(13));

end;

for j:wl to 4 do
begin

for phonumb:=l+(j-l)*t0 to jt10 do

write(printerphonumb:4);

writeln(printer);
for phonumb:=l+(j-l)*1O to J*1O do

write(printer,sm.nxtsttstatephonumb-Il)4)i

writeln(printer)i
wrtteln(printer);

end;
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wrlteIn(prIntet.,Stat*: I,stat&);

writaln~ptintefa'Output word is 1',
sa.wtezt~sm-wordrEdstat.22,']');

for k:ul to 4 do
wri te(printer,012r( 13));

if counter=2 then writ.Cprinter,ohr(12) ;

and;
if keypress then

begin
wr I t aI n;
writo(Qult printing? yin');
teadlnC answer);
If (answerm'y') or (answerzY) then

begin
wri teln( ohr (12));

exit(print);
endi

and;
end;

end;
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*ee***eeeeetellllelaltee*eelee~ele**aglletltleelgellaleuaatelealgleale

The main procedure is a keyboard input routine
followed by a case statement. The user may edit or

execute from the main loop.

twtee,****t**a*aaeteaatcexaeaefe*eeesttetttess eeaesttteet~e tse

begin

Init;

repeat
screen;

ch:=getchar(C'q' 0 ,'' p POW )

case ch of

e','E':begin
zmode:=false;

editor

end;
p','Pl:print;
q' ,0' :begin

quit:=true;

end;

','Z':begin

visible:=Ialse

zmode:=true;

phonum:=O;

statmach;

end;

yv ,'Vl:begin

visible:=true;

amode:utrue;

phonum:O;

statmach;
end;

Owl IW' :begin

vocab;

end;

end; (*case*)
until quit;

sa ves;
clear;

end.
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The following intrinsic unit is a separately
compiled unit which must be placed in the system
library for the main program to use. Alternatively,
the procedures may be extracted from their context
In this intrinsic unit and compiled as in line
procedures in the main program.

The following procedures were extracted from a
program titled, DISKIO, on the APPLE3: diskette
supplied with the Apple Pascal system. The
procedures art useful in that they provide terminal
independent screen output as well as "bullet proofm
input by the procedure getchar;

unit io; intrinsic code 25 data 26;

inter face
type

ortoommand =(eraseoseoraseol ,upedown~right, Ieft~leadin);
setofchar set of char;

Tar
f : f Ile;
crtinfo: packed array~crtcommandlof char;
pref I ed : array [ortoomamandi of boolean;

procedure beep;
procedure crt(c: crtcommand);
procedure promptat(y: Integer; %: string);
procedure clear;
function getchar~okset: setofohar): char;

implementation
war

buffer: packed arrayCO. .5111 of char;
i,byte: integer;



The function of beep is to send an ASCII oharater 7
to the terminal and ring the bell

ottttttttttttttettt,,ttaootottteotet'tttttttoott*to~t,,tot,,tteatt*t

)1

procedure beep;

begin
write(chr(?));

and;
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The crt procedure permits clearing to the.end of the
current line, clear to end of screen and cursor

moves up, down, right, and left.

g eee~tt a~et tt t ttteattwtc ttt tt ea ftateaeratttttaa a ata atttttt

procedure art;
(2 ort commands are: eraseoseraseolup,downright,left. C)

begin

if prefizedEc) then unitwrite(l,crtinfoleadin) 1,0,12);

unitwrite(l,artinfocl,1,0,12);

end;

I
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Promptat writes message to the screen on aspecified
line.

teates,,etttetetuttteeetattega,,aaaeeeuuttet~eettttetetetaeteeta~eaes

)

procedure promptat;
begin

gotozy(O,y);
write(s);

ort(eraseol);

end;
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Getohar returns a single character. The programmer

specifies an acceptable set of inputs when the

procedure is called. If a user attempts to type a

character not specified by the programmer, getohar

beeps and waits for a proper input.

tttcttcceteeccccaeccacttettccctecttcctasetetettcttctttttctcctttctctc

)

function getchar;

(* get a character, beep if not in okset, echo only if printing c)

var ch: char;

good: boolean;

begin

repeat

read(keyboard,oh);

if eoln(keyboard) then ch:wchr(13);

good:= ch in okset;
if not good then beep

else if ch in E' .. ')'] then write(ch);

until good;

getchar:nch;

end;
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Clear provides a termainal independent screen clear.

procedure clear;
begin

gotozytO,O);
art(eraseos);

end;
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The code in this main procedure of the unit is run
automatically by the Pascal system before the main
program is loaded. This code reads the file,
SYSTEM.MISCINFO to obtain the information necessary
to control the terminal.

begin
reset~f,'*system.miscinfo');
i:ublockroad(f,buffer,l);
close( f)
byte:cord(buffer[72l); (* prefix information byte)
crtinfotleadinJ :zbuffer[62) , prefizedtleadin3:xfalse;
crtlnfo~eraseosj:=bufferC643; prefixed~eraseos3:zodd(byte div 8);
crtinfoceraseol3:=bufferr653; prefixed~eraseolJ :=odd(byte div 4);
ertinfolrightj :=buf terE66J , prefixed~right] :=oddcbyte div 2),
ortinfo~upi :=buffer(671j prefixed~up] :=odd(byte);
crtinfo~left3:=bufferr6s); prelized~leftl:zodd(byte div 32);
ortinfofdown3:=chr(lO); prefixod~down]:wfalso;

end.
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